Let s(o) be the first derivative of -o6⁄120 + o3⁄3 - o**2 + 1. Let z(w) be the second derivative of s(w). Let q be z(0). Solve q*y - 5 = y for y.
5
Suppose -r = -3*m - 21, 4*r - m = -3*m + 126. Let s be 1⁄1 - (-28 + 4). Suppose 3*i + 0*q - 10 = -q, s = 4*i - q. Solve r = i*k + 5 for k.
5
Let j = -19 + 33. Suppose -10 = -p + 3*v, -5*p + 10 = -2*v - j. Let k be (-2)/(-8) + 7/p. Solve -u - k*u = 9 for u.
-3
Let n be (-98)/(-21) - 2⁄3. Solve -n*u - 16 + 4 = 0 for u.
-3
Suppose 0 = 3*f - 4*n + 8, f = -4*f + 2*n - 4. Let k = 50 - 46. Solve 0 = -4*l - f*l - k for l.
-1
Let z be -4 - (-1 + -5 + -2). Solve -t = -1 - z for t.
5
Let g be 4⁄10 + 246⁄10. Suppose 0 = 3*n + g - 73. Let i = 24 - n. Solve 5*j + i = -7 for j.
-3
Let x(g) be the first derivative of -g4⁄4 - g3 + 2*g**2 + 2. Let v be x(-4). Solve v*q = -4*q + 12 for q.
3
Let g be (-32)/6 - 2/(-6). Let h = -3 + 15. Let u = h + g. Solve 0 = -3*x - u - 2 for x.
-3
Let d(a) = -a + 2. Suppose -p + 0*p = 0. Let u be d(p). Let c = 7 - -1. Solve u*s = -0 - c for s.
-4