Let q(n) be the first derivative of n**2⁄2 - 6*n - 3. Let a be q(6). Solve a = -4*z + 6*z + 8 for z.
-4
Let u be 1⁄2 + 1*6⁄4. Solve u = -h + 5 for h.
3
Let m be (-1 - -2)/((-2)/(-6)). Let t = 5 - 7. Let n = 4 + t. Solve 0 = s + n*s + m for s.
-1
Let x be (-2 - 5)*2/(-1 + -1). Solve 3*n - 4 = -x for n.
-1
Let w be (-48)/18*9/(-4). Let y(u) = u**2 - 6*u + 3. Let s be y(w). Suppose -s*a = -0*a - 6. Solve r + 2 = -a for r.
-4
Suppose -d - 6 = 5*r, 3*d + 0 - 12 = 0. Let a = -1 - r. Solve 0 = -b - a + 4 for b.
3
Let v = -11 + 15. Suppose 3*d - 5*p + p - 28 = 0, -v*d = -2*p - 24. Let h = -26 - -38. Solve -d*c = -c - h for c.
4
Suppose g = 12*g - 88. Let n(k) = 2*k + 0*k - 5 - 3*k. Let f be n(-5). Solve -2*i + 0*i + g = f for i.
4
Let l(k) = -k**2 - 9*k - 5. Let d be l(-8). Suppose 5*n + d*j - 23 = 2*j, -29 = -5*n - 3*j. Solve 0 = -3*u + n + 5 for u.
3
Suppose -2*c + 0*c = -2. Let r be -10*c*2/(-4). Solve p = r*p for p.
0