Let f(m) be the first derivative of m3⁄3 - m2 - 3*m + 1. Let a(p) be the first derivative of f(p). Let n be a(2). Solve y + 6 = n for y.
-4
Let s = 14 - 8. Let k be (-2)/(-3) + (-4)/s. Suppose q + 3*q - 8 = 0, k = -3*z - q + 20. Solve u + 2*u = z for u.
2
Suppose -5*m - 182 = 2*g, 0*g + 3*g + 3 = 0. Let r be (m/(-15))/((-8)/(-20)). Solve -d + r = 2 for d.
4
Let r = 14 - 14. Solve r = 4*s - 7*s for s.
0
Let q(b) = b + 9. Let y be q(6). Solve -y = 3*v - 6*v for v.
5
Suppose 8*s - 3*s = 10. Solve -s*x + 4*x = -4 for x.
-2
Let k = 32 + -13. Suppose -t + a + 0*a - 2 = 0, 3*t - k = -2*a. Solve 2*h - 3*h = -t for h.
3
Let j = -1 - -8. Solve -3*a - 12 = -j*a for a.
3
Suppose 2*v - 3*r + 4 = 0, 0 = 2*r - 6r + 8. Let b be 1(-2 - (1 - 7)). Let s(o) = 6*o + 1. Let k be s(1). Solve -b*j + k = -v for j.
2
Let c be 6/(-15) - 52⁄20. Let m be -4 - c - (-3 - 1). Solve 0*v + v = -m for v.
-3