Let t(u) be the first derivative of -4*u3⁄3 + 4*u2 - 1. Let k(w) = -w**2 + w. Let l(s) = 3*k(s) - t(s). Let d be l(5). Solve 3*i + 1 + 11 = d for i.
-4
Suppose 5 = -5*h - 4*i, 2*i - 3 - 2 = -h. Let w = -3 - h. Suppose f = w, y - 3*f + 1 = -3. Solve -3*z = -z + y for z.
-1
Let f(w) = w**2 - 2*w + 1. Let v be f(2). Solve 3 = 4*y - v for y.
1
Let z be ((-4)/(-14))/(6⁄42). Let r(p) = -p**2 - 5*p - 4. Let i be r(-3). Solve z*b - b = -i for b.
-2
Suppose -3*r = -q - 3, 2 = -2*r + 3*q - 3. Solve -k = r + 2 for k.
-4
Let t(d) = -2*d - 6. Let z be t(-5). Suppose -3*s + 0*o + 27 = -5*o, z*s - 31 = 5*o. Suppose -s*u - 9 = -7*u. Solve 0 = u*n + n for n.
0
Suppose -3*w = 1 + 17. Let v(s) = s**2 + 4*s + 8. Let n be v(w). Solve -n = t + 3*t for t.
-5
Let o(g) = -3 + 0 + 3 + 4 + g. Let r be o(-4). Let y be (-2)/(r + 0 - 1). Solve -7 = y*j + 1 for j.
-4
Let g = -13 + 17. Solve 8 = 3*t - g for t.
4
Let b be 1 - 0 - (1 - 3). Suppose -b + 0 = q. Let s(h) = -h3 - 3*h2 - h - 1. Let u be s(q). Solve 16 = 2*k + u*k for k.
4