Let k(j) be the first derivative of 9*j + 2 - 1⁄3*j3 + 3*j2. Let s be k(7). Solve 3 = g + s for g.
1
Suppose 2*t + 2 - 6 = 0. Suppose 0 = -t*b + 4. Suppose b*g - 1 - 3 = 0. Solve g*s - s = 0 for s.
0
Suppose -3*c + 5*p = c - 85, -5*c + 95 = 5*p. Let r be (-96)/(-18) + 1/(-3). Suppose -5 = r*o - c. Solve 5*d + 2 = o*d for d.
-1
Let p be (-50)/(-14) - (-40)/(-70). Solve -p*m - 7 + 1 = 0 for m.
-2
Let p be 5*(13⁄5 - 2). Let v(n) = 2*n - 1. Suppose 3 = -2*j + 5*c, 3*c - 3 + 0 = 0. Let t be v(j). Solve -7 = -p*r - t for r.
2
Suppose -g - 6*d + 2*d + 5 = 0, -20 = -4*g - 5*d. Solve 3*y + g = 20 for y.
5
Suppose 4 - 1 = p + 3*n, -5*n + 12 = 4*p. Solve -a + p*a = -10 for a.
-5
Suppose z = -2*p + 11, -3*p + 0*z = -3*z - 3. Let m(h) = 9*h**2 - 2. Let u be m(-2). Let w = -18 + u. Solve p*t - 8*t = -w for t.
4
Let c(d) = -d**2 - 4*d + 6. Let z be c(-5). Let g be (-2)/(z + -2 + 0). Let p be (36/(-45))/(-3*4⁄90). Solve 0 = -g*s + 4*s + p for s.
-3
Let g = 5 + -4. Solve i - g = -6 for i.
-5