离散数学代数系统

此系统中,0是幺元e一个元素a的逆元,记为a^(-1),即a★b=b★a=e5^4 = 5★5★5★5 = 22 的逆元为 4 答题不易,请及时采纳,谢谢!

离散数学中的矩阵和线性代数中的矩阵有什么区别和关系?

如果a可逆的话,矩阵a的逆的行列式等于矩阵a的行列式的负一次方

集合的负一次方是什么意思

解:负一次方其实就是求它的倒数。x^(-1)=1/x。根据关系的定义,R可以用X^2的一个子集A代表,R具有对称性是说如果(x,y)∈A,则(y,x)∈A。R^(-1)的定义是,如果R:(x,y)∈A,则R^(-1):(y,x)∈B。根据对称定义,R对称:A=B,即R=R^(-1)。反之,R=R^(-1),就是说(x,y)和(y,x)会同时∈或不∈A(=B)。概念集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。

数学中,各种符号表示的意思。比如R是实数、、、

太多了数量符号  如:i,2+i,a,x,自然对数底e,圆周率π。运算符号  如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),绝对值符号“| |”,微分(dx),积分(∫),闭合曲面(曲线)积分(∮)等。关系符号  如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“⊆”是“包含”符号等。“|”表示“能整除”(例如a|b 表示 a能整除b),x可以代表未知数,y也可以代表未知数,任何字母都可以代表未知数