i的三次方等于多少?

i的三次方等于-i。

次方最基本的定义是:设a为某数,n为正整数,a的n次方表示为aⁿ,表示n个a连乘所得之结果,如2⁴=2×2×2×2=16。

次方的定义还可以扩展到0次方和负数次方等等。在电脑上输入数学公式时,因为不便于输入乘方,符号“^”也经常被用来表示次方。例如2的5次方通常被表示为2^5。

次方最基本的定义是:设a为某数,n为正整数,a的n次方表示为aⁿ,表示n个a连乘所得之结果,如2⁴=2×2×2×2=16。次方的定义还可以扩展到0次方、负数次方、小数次方、无理数次方甚至是虚数次方。

在电脑上输

i的3次方是多少?

i的3次方是-i。运算过程如下:i^1 = i,i^2 = - 1,i^3 = - i,i^4 = 1。i^n具有周期性,且最小正周期是4, i^4n=1,i^4n+1=i,i^4n+2=-1,i^4n+3=-i。由于虚数特殊的运算规则,出现了符号i。在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,他规定i²=-1。虚数单位来源虚数单位“i”首先为瑞士数学家欧拉所创用,到德国数学家高斯提倡才普遍使用。高斯第一个引进术语“复数”并记作a+bi。“虚数”一词首先由笛卡儿提出。早在1800年就有人用(a,b)点来表示a+bi,他们可能是柯蒂斯、棣莫佛、欧拉以及范德蒙。把a+bi用向量表示的最早的是挪威人卡斯巴·魏塞尔,并且由他第一个给出复数的向量运算法则

i的三次方是什么?

i的三次方是三个i相乘。i的三次方是ixixi,几次方最基本的定义是设x为某数,n为正整数,x的n次方表示n个x连乘所得之结果。i的三次方是三个i相乘。如i=2=2×2×2=8。次方的定义还可以扩展到0次方和负数次方等。此公式可以用来套用。i=3,i的三次方就是3x3x3=27。二项展开式,这是伟大的科学家牛顿推导出来的,并且他还把指数推广到有理数的范围。学生阶段基本上只用到正整数指数部分的公式,也就是这篇文章主要讲的这个公式。有理数指数的牛顿二项展开式可以称为广义二项展开式,而整数指数展开式则称为狭义二项展开式。想一想300多年前的人,数学理论并不如现在这么齐全,而牛顿就能推导出来我们现在绝大部分人还无法推导出来的公式。

在复数中I的3次方 4次方 5次方等是什么

解:i^3=i^2xi=-1xi=-ii^4=(i^2)^2=(-1)^2=1i^5=i^4xi=1xi=i答:i^3=-i,i^4=1,i^5=i.

复数i的三次方是什么?

复数i的三次方是-i。1、i的平方为-1。2、i的三次方为-i。3、i的四次方位1。4、i的五次方为i。我们把形如z=a+bi(a,b均为实数)的数称为复数。当虚部b=0时,复数z是实数。复数i的性质:复数的加法法则设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。把两个复数相乘,类似两个多项式相乘,结果中i²= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。