初三的数学知识点

一、相似三角形(7个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。考点3:相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。考点4:相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。考点5:三角形的重心考核要求:知道重心的定义并初步应用。二、锐角函数值(2个考点)考点7:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值

初三数学书目录及重要知识点

初三数学的重要知识点有一元二次方程、二次函数、圆、概率、反比例函数等等,接下来分享初三数学书目录及部分重要知识点。 初三上学期数学书目录 初三下册数学书目录 初三数学重要知识点 (一)一元二次方程 1.只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。 2.一元二次方程的解法 (1)开平方法 (2)配方法 (3)因式分解法 (4)求根公式法 3.判别式 利用一元二次方程根的判别式(△=b²-4ac),可以判断方程的根的情况。 (1)当△>0时,方程有两个不相等的实数根; (2)当△=0时,方程有两个相等的实数根; (3)当△<0时,方程无实数根,但有2个共轭复根。 (二)圆 1.在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴

初中数学学好要掌握哪些基础知识点?

初中数学学的基本内容涉到五个学习大类。分别是“数与运算”,“方程与代数”, “图形与几何”,“函数与分析”,“数据处理与概率统计”一、数与运算系列内容建立从自然数、有理数到实数的数系基本结构。内容要求包括:引进无理数,形成实数概念;建立数系结构,主要是顺序结构(大小比较)和运算结构(基本运算法则、性质、顺序)。二、方程与代数系类内容以方程研究为中心,构建初等代数的基础。内容要求包括:代数式是根基,方程为中心,不等式讲初步;突出数学思想方法,如化归思想以及换元、消元、配方、降次等方法。在整体安排上,一是提供如数系通性、等式性质等基本依据,如代数式及其运算等变形基础;二是系统研究基本的初等代数方程,形成关于初等代数方程的基本理论(主要指各类代数方程的基本解法以及解的存在性、个数、分布,还有方程的通解等)。三、图形与几何系列内容以研究图形性质为载体,形成初等几何的基础。内容要求包括:体现经验几何是起点,注重直观感知

初中数学都有什么内容?

初中数学主要包含代数和几何两部分。数与代数知识点主要包括有理数、实数、代数式、整式、分式、一元一次方程、二元一次方程(组)、一元二次方程、一元一次不等式(组)、一次函数、反比例函数、二次函数等。几何部分知识点包括线段、角、相交线、平行线 、三角形 、四边形 、相似形 、圆等。扩展资料许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论

初三数学知识点有哪些?

初三数学知识点有:一、锐角三角形函数1、正弦:把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA=a/c;2、余弦:把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA=b/c;3、正切:把锐角A的对边与邻边的比叫做∠A的正切,记作tanA=a/b;4、余切:把锐角A的邻边与对边的比叫做∠A的余切,记作cotA=b/a。二、相似三角形两个对应角相等,对应边成比例的三角形叫做相似三角形。两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。三、圆和圆的位置关系若连心线长为d,两圆的半径分别为R,r,则:1、两圆外离<=>d>R+r;2、两圆外切<=>d=R+r;3、两圆相交<=>R-r<d<R+r(R>r)。四、二次函数的概念一般地,如果y=ax+bx+c(a,bc是常数,a≠0),那么y叫做x的二次函数。y=ax+bx+c(a,bc是常数,a≠0)叫做二次函数的一般式